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Executive Summary 
 
 Ferromagnetic circuit analysis provides an engineering tool for the design and control 
of electric motors and solenoids.  In an approximate but useful form of the analysis, magnetic 
hysteresis is ignored, and eddy currents are approximated by a “shorted-turn” circuit model.  
The analysis of this paper relies on these approximations but allows for the later introduction 
of magnetic saturation, whose effects can be critical in solenoid analysis.   

For analyzing the dynamic performance of a solenoid or motor, the characteristics of 
the device are measured in advance and subsequently treated as constraining relationships.  
Thus, inductance may be treated as a function of measured armature position, or position 
may be treated as a function of measured inductance.  When a particular variable is chosen 
as an independent variable (e.g., position), then other variables (e.g., inductance, reluctance) 
are constrained as dependent variables. 

Ignoring hysteresis and using a shorted-turn eddy current model, the dynamic state of 
a solenoid or motor is totally specified by three independent variables, called the state 
variables.  A common choice is 1) winding current, 2) armature velocity (linear or angular), 
and 3) armature position (linear or angular).  Given these choices, the list of dependent 
variables includes: inductance, reluctance, flux linkage, magnetic force, and velocity.  A third 
category of parameters describes external interactions: applied voltage and external force. 

Several alternative sets of three state variables can be used with equal validity to 
specify the system.  Certain choices lead to simpler formulations, with greater potential for 
insight and further innovation – the “equally valid” solar system models of Ptolemy (earth at 
the center) and Copernicus (sun at the center) come to mind.  In the case of solenoids 
transitioning from low inductance to much higher inductance as they close, it is argued that 
the state vector of (flux-linkage, velocity, position) is a preferable representation to the state 
vector of (current, velocity, position).  The dynamic equation for flux-linkage approaches a 
linear differential equation as a solenoid approaches magnetic closure, while the comparable 
dynamic equation for current involves two competing terms with singularities just beyond the 
landing position: inductance, and back-EMF.  Unlike the troublesome dynamic equation, the 
equation for current as a non-dynamic dependent variable is free of singularities. 

“Sensorless” servo control is based on voltage and current measurement and 
mathematical inference of flux linkage and position.  It is argued that this approach can work 
better than position measurement for control of solenoid soft-landing.  In the “sensorless” 
approach, using control of flux linkage rather than current, the magnetic force is controlled 
with lower error sensitivity near landing, and magnetic saturation effects are always known 
and under control, with no inadvertent current spiking. 

Building on this paper, a Part 2 follow-up will provide more complete derivations and 
will introduce a well-behaved algebraic expression for reciprocal-inductance as a function of 
position, describing a large class of solenoids with surprising accuracy.  Future papers will 
introduce saturation models and approximate corrections for hysteresis and eddy currents.  
These simple models complement the powerful but cumbersome tools of FEA, providing a 
bridge from FEA to equation models useful in dynamic simulation and control. 
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The “Classic” Formulation 
 

This paper deals with electromagnetic circuit analysis and simulation as applied to 
solenoids and motors.  For simulation, the dynamic state variables are usually chosen to be 
“momentum like” quantities, that is, cumulative variables resulting from the integration of 
some force-like variable.  Electric current, armature velocity, and armature position are the 
“classic” state variables for solenoid analysis.  A similar formulation applies to rotary motors, 
substituting “angle” for “position.”  The dynamic system is driven by voltage on the electrical 
side and by force on the mechanical side.  The electrical side has an inertia-like quantity 
called inductance, while the mechanical side has an inertia-like quantity called mass.  For 
losses, one has electrical resistance and friction damping.  Finally looking inside the “black 
box,” one recognizes some variable internal parameters: magnetic reluctance, magnetic flux 
linkage, and mechanical momentum.  If the nature of the solenoid is specified in advance, 
then these internal parameters may be expressed as dependent variables.   

Thus, for a given solenoid, magnetic reluctance can be described as a function of 
armature position.  Given that descriptive function and a specified position, X, then reluctance 

ℜℜ and inductance L become dependent variables:  
 

ℜℜ = ℜℜ(X) … symbolic statement that “Reluctance ℜℜ is a function of position X.”  
 
L = L(X)  … symbolic statement that “Inductance L is a function of position X.” 
 

Thus, both ℜℜ and L fall into the dependent variable category if X is chosen as the 
independent variable. 
 
Familiar Dynamic State Variables: 
  1]  I   =  winding current … from integral of voltage, also dependent on position 

  2] X&  =  armature velocity … from integral of force/mass 
  3]  X  =  armature position … from integral of velocity 

 
If the characteristics of the solenoid are quantified in advance, this characterization 

leads to several dependent variables, some of which might swap places with state variables. 
 

Familiar Dependent Variables: 

  4] ℜℜ  =  magnetic reluctance  
  5] L  =  inductance 

  6] nΦ  =  flux linkage (a common notation: λλ = nΦ) 
  7] F  =  magnetic force 
 
Fixed Characteristics of the Solenoid: 
  8] R  =  electrical resistance (may vary significantly with temperature) 
  9] n  =  number of windings 
10] M  =  moving mass 
11] K  =  spring rate 
12] XK0  =  spring equilibrium 
13] D  =  damping coefficient 
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Solenoid Characteristic Equations: 
14] L  =  L(X)  inductance is a calibratable function of position 

15] ℜℜ  =  ℜℜ(X)  magnetic reluctance is a calibratable function of position 
 

External Influences: 
16] V  =  applied voltage 
17] F  =  load force 

 
Familiar Equations: 

18] I L = nΦ ( = λλ) “inductive momentum” is analogous to mechanical momentum 
 
19a] E i = ½ I2L  
     or   “inductive energy” is in balance with mechanical energy 

19b] E i = ½ I nΦ 
 
20] Vi = V – I R   “inductive voltage” after correction for resistive voltage drop 
 

21a] Vi = 
dt

L) d(I
 

    or   inductive voltage is the “force” that changes inductive momentum 

21b] Vi  ≡≡ 
dt

)d(nΦ
 

 

22] nΦ ≡≡ ∫Vi dt + const. Eq. 21b or 22 defines flux linkage 

 

 Where does Eq. 18 come from?  How do we know that the flux linkage nΦ is identical 

to the product of current and inductance?  First, note that the expression “nΦ” is treated as a 

single variable, not as the product of two variables, “n” and “Φ”.  In fact, “nΦ”, called “λλ” in 
some papers, is defined equivalently by Eq. 21b or Eq. 22.  To derive some of the 
relationships in Eqs. 18 through 22, we repeat a few fundamental formulas.  Since the 
context of these formulas is somewhat different, we use the numbering sequence “f1, f2, etc.” 
to set these formulas apart from the later sequence continuing with Eq. 23. 

 A given magnetic flux quantity, Φ, is meaningful only when associated with a specific 
cross-sectional area.  For a one-turn winding, Maxwell’s equations imply that: 

f1] Vi = 
dt

dΦ
  fundamental formula #1, when flux Φ links one turn 

 
 For a winding with n turns, the flux is not the same for all the turns.  The net flux 

linkage variable defined in Eqs. 21b and 22 is named “nΦ” to suggest the cumulative flux 
effect on n windings.  For fixed inductors, inductance is defined as the coefficient that relates 
the time derivative of current to inductive voltage: 

f2]  Vi |L = L 
dt

dI
  fundamental formula #2 = definition of fixed inductance L 
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 The physics books show that by multiplying both sides of Eq. f2 by current “I” one gets 
power, which is the time derivative of inductive magnetic energy E i : 

f3] 
t

Ei

∂

∂ |L = Vi |L • I time derivative of inductive energy at constant L 

f4] 
t

Ei

∂

∂ |L = L • 
dt

dI
 • I  substituting from f2 in f3 

f5] 
t

Ei

∂

∂ |L = L •
dt

 )I d( 2

 from f4 

 
 Integrating both sides of f5 with respect to time, starting from zero energy at zero 
current, one obtains the textbook formula for energy in a fixed inductor: 
f6] E i = ½ I2 L  “textbook” inductive energy formula, confirms Eq. 19a 
 
 Returning to the beginning of the energy derivation at f3, one could substitute from Eq. 
21b instead of from the f2 definition: 

f3] 
t

Ei

∂

∂ |L = Vi |L • I  f3 again, now starting a flux linkage derivation 

f7] 
t

Ei

∂

∂ |L = 
dt

)d(nΦ
 • I  substituting this time from Eq. 21b 

f8] 
t

Ei

∂

∂ |L = 
dt

)d(nΦ
 • nΦ •

Φn

I
 multiplying and dividing by nΦ 

f9] 
t

Ei

∂

∂ |L = 
dt

 ))d( (n 2Φ
•

Φn

I
 from f8 

 
A fundamental physics equation is needed here: 

f10] 
Φn

I
 = const.    special case for constant X and constant L 

 
The concept conveyed by f10 is that in a linear inductor with constant geometry, 

current and flux will change everywhere in linear proportion.  Consequently, the particular flux 
pattern linking the winding and causing the flux linkage is linear with current.  Integrating both 

sides of f9 with respect to time with “
Φn

I
” behaving like a constant coefficient, yields: 

f11]  E i = ½(nΦ)2 •
Φn

I
  from f9 and f10 

f12]  E i  =  ½ I  nΦ   simplifying f11, this confirms Eq. 19b 
 
 Returning to the earlier question, where did Eq. 18 come from?  The derivations of 
Eqs. f6 and f12 confirm Eqs. 19a and 19b.  Setting the right sides of Eqs. 19a and 19b equal 
to each other and simplifying yields Eq. 18.  Eq. 21b was a definition of flux linkage, being a 
natural extension of the fundamental formula Eq. f1 when one considers a winding of n turns 
rather than flux through a one-turn loop of wire.  Eq. 21a follows from Eqs. 18 and 21b. 
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The Flux Linkage Formulation 
 

 Flux linkage “nΦ” was introduced in Eq. 6 as a dependent variable. Eq. 18 shows that 
this dependent variable is the product of the state variable “I” multiplied by the dependent 

variable “L”.  Alternatively, one could make “nΦ” a state variable and then solve for the 
dependent variable “I”, giving us new choices for state variables and independent variables.  
 
Flux-based Dynamic State Variables: 

  1’] nΦ =  flux linkage  … from integral of inductive voltage Vi (see Eq. 20) 

  2’] X&  =  armature velocity … from integral of force/mass 
  3’]  X  =  armature position … from integral of velocity 

 
Flux-based Dependent Variables: 

  4’] ℜℜ  =  magnetic reluctance   = ℜℜ (X) ℜℜ is a calibrated function of X 

  5’] 1/L  =  reciprocal inductance = ℜℜ / n
2  formula for “n” windings 

  6’] I  =  winding current   = nΦ (1/L) 

  7’] F  =  magnetic force   = – ½ (nΦ)2 

X

(1/L)

∂

∂
 

 
Comparing to the original equations 1 through 7, Eqs. 1’ and 6’ are in the swapped 

positions of the original Eqs. 1 and 6.  Furthermore, the inductance “L” of Eq. 5 becomes 
reciprocal inductance “1/L” in Eq. 5’.  As indicated, 1/L varies in linear proportion to magnetic 

reluctance “ℜℜ”.  Suppose the position variable X is defined as the magnetic gap in a solenoid, 
so that X = 0 corresponds to the position of maximum mechanical closure, maximum 
inductance, and minimum magnetic reluctance.  The appearance of the function 1/L (X) is 
shown in Fig. 1, graphed from measurements on a small engine valve actuation solenoid 
using E-core laminations attracting a slab of armature laminations: 

Fig. 1 
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The reluctance function, ℜℜ(X), has the same appearance with a different vertical scale 
factor.  The 1/L (X) function goes almost to zero at X = 0.  While L is rising steeply toward a 
singularity in the inaccessible region just to the left of the origin, the function 1/L is gently 
curving with no sign of a singularity.  For a solenoid whose armature and yoke reach full 
contact with no remaining magnetic gaps, the tangent slope to the 1/L function at X = 0 can 
be estimated quite accurately by a formula involving the mating magnetic poleface area, the 
slope (if any) of that area relative to the direction of axial motion (for example, the slope of a 
conical armature end surface compared to the zero-slope of a flat-ended armature), and the 
number of windings, n.  For large X, the 1/L function levels off asymptotically to a maximum 
as the armature is removed to infinity. 

As a dynamic state variable, current “I” bears a complex dynamic relationship to 
voltage and position.  As a dependent algebraic variable, “I” is simply the product of flux 

linkage “nΦ” and the “1/L” function.  Let us examine these relationships more closely.  First, 
we repeat Eq. 21a: 

21a] Vi = 
dt

L) d(I
   (repeated) 

 
 This equation is correct for variable inductances, for example, solenoids, where L = 
L(X).  Recalling the physics of fixed linear inductors, one might have believed the following: 

21a] Vi  =   L
dt

 dI
   not true when L varies with time 

 
Expanding the derivative in Eq. 21a gives: 

23] Vi  = L
dt

 dI
 + I

dt

 dL
 

 
The first term of 23 is the familiar linear inductor equation.  The second term of 23 is 

called “back-EMF”: 

24] back-EMF ≡≡ I
dt

 dL
  definition of the term 

 
 Two equations for magnetic force are given here without derivation, which will be 
deferred to the Part 2 paper following this one.  It is noted that the most “obvious” derivation 
of Eqs. 25 and 26 incorrectly gives the negatives of the force results shown here: 

25] F = ½ I2 

X

L

∂

∂
   force in the “current and position” frame of reference 

26]  F = – ½ (nΦ)2

X

(1/L)

∂

∂
 force in the “flux and position” frame of reference 

 Eq. 26 was previewed in Eq. 7’.  Imagine a “perfect” solenoid for which the position “X” 
is chosen to represent the magnetic gap, so that as X goes to zero, inductance goes to 

infinity and the “1/L” function goes smoothly to zero with a finite slope.  Since 
dt

)d(nΦ
 = Vi  

(Eq. 21b) and the inductive voltage Vi remains finite with no singularity at X = 0, we conclude 

that for an energized solenoid, nΦ must remain finite with no singularity at the solenoid 
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impact point, X = 0.  In force equation 26, the slope of reciprocal inductance, 
X

(1/L)

∂

∂
, is finite 

and continuous at X=0, as is the square of flux linkage, nΦ, so there is no singularity in force.  
The rate at which magnetic force can be altered by a control voltage is a smoothly varying 
function, highest near X=0 and highest where the flux linkage is high (giving a steep slope to 

the (nΦ)2 parabola), and declining smoothly for increasing X and decreasing nΦ.  Finally, 

since current is I = nΦ • (1/L) (Eq. 6’) and since the (1/L) function has a finite slope at X=0, we 

conclude that at X = 0, current I = 0 and 
dt

 dI
 is finite.  Since the resistive voltage term “I R” in 

Eq. 20 goes continuously to zero at the impact point, we further conclude that at X = 0, 
inductive voltage Vi  equals the applied voltage V.  Thus, the dynamic system is “well 
behaved” right up to the moment of impact, with the applied voltage approaching total control 
of the time derivative of flux linkage on approach to impact. 
 This description is in stark contrast to the description commonly given for solenoid 
behavior on approach to closure.  There is no need to single out any particular paper for the 
“classic” description, since the conclusions are implied by basic physics equations.  
Examining the terms of Eq. 23 for the idealized “impact at X = 0” scenario just described, we 
have shown that the left-hand term, inductive voltage Vi , approaches the finite driving voltage 

V at impact.  The term “L
dt

 dI
” must go to infinity, since L goes to infinity and 

dt

 dI
 is finite for 

non-zero flux linkage and non-zero velocity, meaning for an energized solenoid making a 
realizable imperfect landing.  Since the two right-hand terms of Eq. 23 must sum to a finite 

number, the back-EMF term “I
dt

 dL
” must go to infinity in the opposite direction from “L

dt

 dI
”.  

In force equation 25, 
X

L

∂

∂
 goes to infinity in proportion to 

2X

1
for small X, while the current is 

forced to zero by a skyrocketing back-EMF against a similarly skyrocketing inductive 
impedance – the “irresistible force” (back-EMF) meeting the “immovable object” (inductive 
impedance).  Adding to the confusion, the force equation becomes infinitely sensitive to 
current, even as current comes under the control of overwhelming forces related to the 
closing motion of the solenoid, beyond the influence of servo control. 
 In a real solenoid, the singularity point is not quite reached, lying at a slightly negative 
X while impact stops the armature at X=0.  At impact, the current is small but non-zero, the 
inductance and back-EMF are large but finite, and the sensitivity of force to current is large 
but finite.  It is commonly believed that unless great care is exercised, a solenoid will be 
driven into magnetic saturation as it closes, since only a small current is needed to saturate 
the solenoid.  It is also commonly believed that the steep rise in inductance near impact 
implies that servo control over magnetic force is lost as the solenoid closes.   

These beliefs are largely confused.  It is true that when a solenoid approaches closure, 
the time left for course corrections vanishes rapidly, while voltages intended to control 
position must “filter” their way through tree layers of dynamic integration (from voltage to flux 
and force, from force and acceleration to velocity, and from velocity to position).  Except for 
the shrinking time window before impact, however, the “authority” of the control system over 
magnetic force is actually at a maximum as the solenoid approaches closure.  Current is 
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indeed difficult to control near solenoid closure, but back-EMF tends to force current to zero 
at just the right rate to maintain steady rates-of-change in both magnetic force and flux.   

Attempting to exert control based on measured position and measured current is 
problematic.  In order to control motion, the real objective is not current control, but force 
control.  To solve Eq. 25 accurately for force, one must use measured position X and a 

calibration function describing the force coefficient, 
X

L

∂

∂
, whose slope is large and rapidly 

changing near X=0.  Current must also be resolved near zero, where small absolute 
measurement errors become large fractional errors in the “I2” term of Eq. 25.  Thus, the 
computation of magnetic force from current and position is highly error-sensitive. 

 
 
Flux Linkage Servo Control 
 
 The difficulties of mathematical representation and servo control of solenoids are 
largely resolved in a new frame of reference.  We will recapitulate the mathematical 
conclusions briefly, them move on to the somewhat different demands of servo control. 
 
Recapitulation of the Math: 

• nΦ, flux linkage, becomes a state variable (Eq. 1’) 

• I, current, becomes a dependent variable (Eq. 6’) 
• Vi, the total inductive voltage, becomes the focus of attention 

• I
dt

 dL
 = “back-EMF” becomes an unneeded “fictitious force” 

• nΦ is computed by integration of Vi (Eq. 22) 

• 1/L is the non-singular calibration function of a solenoid’s electromechanical behavior 

• I R = resistive voltage 

• V = Vi + I R is the total voltage that must drive the system 

• F, magnetic force, is computed from non-singular Eq. 26 
 
Servo Control Context: 

• 1/L = 1/L(X) is calibrated to characterize the solenoid 

• I, current, is measured 

• I R, resistive voltage, is computed 

• V, applied voltage, is known or measured 

• Vi , inductive voltage, is computed from V and I R (Eq. 20) 

• nΦ, flux linkage, is computed by integration of Vi (Eq. 22) 

• initial X is known, so 
Φn

I
 ratio is known, therefore nΦ is known for the start of integration 

• X, position, is subsequently computed from I and nΦ (from Eq. 6’, using 1/L(X) calibration) 

• F, magnetic force, is computed for the present and extrapolated future based on Eq. 26 

• X&, velocity, is computed from recent change in X plus known and extrapolated force F 

• V, applied voltage, is controlled to cause Vi and nΦ to be controlled, thus controlling force 
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Several important issues arise for servo control.  The description above postulates 
“sensorless” control, meaning that armature position X is not sensed, nor is there a separate 
sense coil to measure inductive voltage.  Current is measured and applied voltage is either 
measured or else known because it is controlled in a known way (see U.S. patent 6,249,418, 
“System for control of an electromagnetic actuator” by Bergstrom), so any sensing that takes 
place is removed from the solenoid and into the controller electronics.  The difficulty with this 
approach is initialization and subsequent drift of the flux linkage integral. 

For initialization of flux linkage, a solenoid generally starts from a known full-open 

position X, for which the ratio 
Φn

I
 is known.  If the solenoid is of soft ferromagnetic material, 

includes no permanent magnets, and is initially at zero current, then the initial flux linkage is 
trivially zero.   

If a permanent magnet is included, the magnet behaves like a source of ampere-turns, 
which is added to the product “nI” to give a corrected value.  Having low differential 

permeability, permanent magnets add a significant fixed reluctance, ℜℜ, to the magnetic 
circuit, which affects inductance and is taken into account in the calibration function 1/L(X).  
Thus, permanent magnets are readily incorporated into the present formulation.  With 
permanent magnets in a solenoid (for example, a self-latching bistable solenoid that is 
unlatched by a releasing current pulse), flux linkage is initialized for a known position, 
typically either full-open or full-closed, based on the correct 1/L(X) calibration and the known 
magnetomotive force of the permanent magnet. 

For rotary motors, with angle θ replacing position X, the function 1/L(θ) will have 

identifiable maxima and minima, corresponding to known values of θ and known maximum 

and minimum values.  Thus, the ratio 
Φn

I
 is known at identifiable maxima and minima in the 

rotation, and the flux linkage can therefore be initialized from the known maximum or 
minimum ratio. 

 After initialization, integration drift is a potential problem.  The resistive voltage I•R is 
critical, and R is subject to thermal drift.  Fortunately, there are several opportunities for a 
controller to recalibrate the resistance R.  Whenever the armature is not moving and a steady 
current is flowing through the winding, the applied voltage is equal to the resistive voltage, 
and it is possible to solve for R.  An opportunity arises when a solenoid is latched.  Another 
opportunity can be created when a solenoid is open, if the armature rests against a 
mechanical stop and does not move when the flux is raised to a fixed level below the 
threshold to start the armature moving.  The controller can therefore calibrate R by ramping 
current up to a “probe” level, then holding current steady and computing R from the resulting 
steady voltage and current. 
 Integration drift is minimized but not eliminated by calibration of R.  For a solenoid 
making a quick transit from one mechanical stop to another, the period of uncorrected 
integration is brief, so cumulative integration drift is not a problem.  For a rotary motor, the 

flux linkage integral can be corrected each time 1/L(θ) passes through a maximum or 

minimum, where the ratio 
Φn

I
 is known.  This leaves only the situation of continuous servo 

control of solenoid armature position between latching points.  This control problem is 
addressed in U.S. patent 6,300,733 by Bergstrom, “System to determine solenoid position 
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and flux without drift.”  This system is applicable where Pulse Width Modulation (PWM) is 
used to control the average voltage applied to a solenoid winding.  Since PWM is the most 
efficient way to drive a solenoid, and since microprocessors and DSP controllers intended for 
electromagnetic control almost universally include PWM outputs, it is hardly a restriction to 
call for PWM control.  For a known supply voltage and a known PWM duty cycle, the 
fundamental component of voltage ripple is known.  Solenoid current ripple is measured.  
Allowing for high frequency effects such as eddy currents, the impedance of a solenoid at the 
PWM frequency differs from but bears a known relationship to the low-frequency inductance 
and, consequently, to the calibration function 1/L(X).  Unfortunately, current ripple 
measurements are prone to be noisy.  Filtered low-frequency PWM and current ripple data 
can provide a good low frequency calibration of flux linkage, down to DC.  More rapid 
variations in flux linkage are tracked by integration of inductive voltage.  Bergstrom provides a 
method for combining drift-immune current ripple data at low frequency with the low-noise 
flux linkage integral data at high frequency.  The ripple data are strongly filtered, minimizing 
noise, and the resulting information is used to correct the drift of the flux linkage integration.  
Specifically, the integral drift is countered by adjusting the resistance estimate, R.  This 
solution cancels slow integration drift and simultaneously corrects the integration of more 
rapid changes in the flux linkage, minimizing dynamic flux integration errors due to an error in 
R. 
  The derivations of this paper will segue into Part 2, which for those interested, will 
derive the magnetic force equations (Eqs. 25 and 26), and will also provide a semi-empirical 
formulation that yields an excellent fit for the function 1/L (X) for most solenoids.  


